INFRARED STUDY ON THE CEP STRETCHING VIBRATION OF 1-PHOSPHAPROPYNE $CH_3C\Xi P \ \ AND \ \ ITS \ \, PERDEUTERIUM \ \ ANALOG \ \ CD_3C\Xi P$

Keiichi OHNO,* Yasumasa YAMAMOTO, Hiroatsu MATSUURA, and Hiromu MURATA
Department of Chemistry, Faculty of Science, Hiroshima University,
Higashisenda-machi, Naka-ku, Hiroshima 730

Unstable molecule 1-phosphapropyne was detected by gas-phase infrared spectroscopy and the vibration-rotation band of the CEP stretching was analyzed for CH_3CEP and CD_3CEP .

In 1979, an unstable molecule 1-phosphapropyne $\operatorname{CH_3C}\equiv P$ was first found by microwave and photoelectron spectroscopy. This initiative work stimulated us to undertake vibration-spectroscopic investigation of this molecule. Mixture samples containing $\operatorname{CH_3C}\equiv P$ were prepared by the pyrolysis of $\operatorname{C_2H_5PCl_2}^{1}$ and the infrared bands of $\operatorname{CH_3C}\equiv P$ were assigned on the basis of the spectral changes with time and of the observed band shapes. In this work, we have dealt with the vibration-rotation analysis of the C $\equiv P$ stretching band for $\operatorname{CH_3C}\equiv P$ and $\operatorname{CD_3C}\equiv P$ in order to make definite band assignment of 1-phosphapropyne.

The infrared spectra were measured on a JEOL JIR-40X Fourier transform infrared spectrometer with a resolution of $0.08\,\mathrm{cm}^{-1}$. The sample pressure was about $3\,\mathrm{kPa}$ in a 12-cm glass cell. In either of the infrared spectra of the pyrolysis products of $\rm C_2H_5PCl_2$ and $\rm C_2D_5PCl_2$, a strong parallel band was observed at 1550-1560 cm⁻¹ as shown in Fig. 1. This band exhibited a strong Q branch as well as series of P and R branches with line spacing of about 2B; possible K structures were not resolved under the spectral resolution available. The J-value assignment of the P- and Rbranch lines were readily made, as indicated in Fig. 1, up to J=60 for CH3CEP and J=80 for $CD_3C\equiv P$. In the spectral analysis, the ground-state constants were first determined by the combination differences method. 3) The agreement between the derived value for B₀ and the value obtained by microwave spectroscopy 1) indicated that the parallel band at 1550-1560 cm⁻¹ was indeed due to 1-phosphapropyne. This band was thus assigned to the CEP stretching mode (v_2). The spectroscopic constants for the v₂ band were subsequently derived from the observed vibration-rotation wavenumbers by constraining the ground-state constants B_0 , $(D_J)_0$, and $(D_{JK})_0$ to the accurately determined microwave values¹⁾ and assuming $(D_{JK})_2 = (D_{JK})_0$, $(D_{K})_2 = (D_{K})_0$, and $[(A_2-B_2)-(A_0-B_0)]=0$. In assigning the quantum number K to each of the unresolved P(J) and R(J) lines, spectral simulation with the Boltzmann factor was employed. Table 1 gives the spectroscopic constants determined for the $\boldsymbol{\nu}_2$ band of CH₂C=P and CD₂C=P. The standard errors of the least-squares fit of 124 lines for CH_3 CEP and of 178 lines for CD_3 CEP were ±0.020 and ±0.023 cm⁻¹, respectively.

The fact that the v_2 wavenumbers for CH₃CEP and CD₃CEP are almost the same indicates that the CEP stretching vibration couples negligibly with methyl group

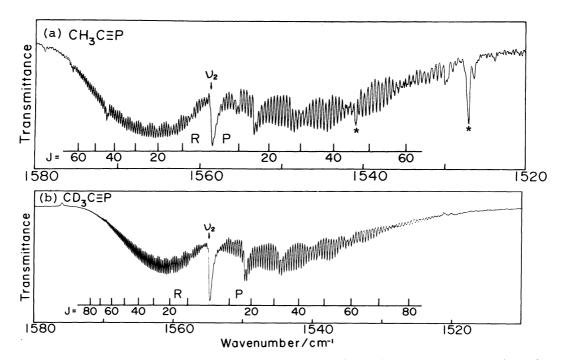


Fig. 1. Vibration-rotation spectra of the v_2 band region of $CH_3C\Xi P$ (a) and The peaks marked with asterisks are $^{R}Q_{K}$ branches of the v_{6} band.

vibrations. This contrasts with the large coupling of the CEP stretching vibration with the skeletal stretching vibration; the observed CEP stretching wavenumbers are in fact spread over in the 1270-1680 cm⁻¹ region for HCEP, FCEP, and CH₃CEP. 2)

The Q branches of the hot bands, $v_2+v_8-v_8$ and $v_2+2v_8-2v_8$, were also observed at 1553.63 and 1548.67 cm⁻¹, respectively, for CH₃C=P and at 1549.91 and 1544.91 cm^{-1} for $\text{CD}_3\text{C}\Xi\text{P}$. The anharmonicity constant x_{28} was therefore derived to be -5.03(7) cm⁼¹ for either of the isotopic species.

In conclusion, the parallel band at 1550-1560 cm⁻¹ was assigned to the C≡P stretching vibration of 1-phosphapropyne, on the basis of the derived value for the rotational constant B and the small wavenumber shift of this band on deuteration.

Table 1. Spectroscopic constants (cm⁻¹) of the v_2 band for $CH_2C\equiv P$ and $CD_3C\equiv P^{a}$)

Constant	CH ₃ C≡P		CD ₃ C≡P	
	ν ₂	Ground state	ν ₂	Ground state
(v ₀) _v	1558.724(25)	_	1554.962(25)	-
B	0.165368(15)	0.16649312 ^{b)}	0.1423070(74)	0.14322105 ^{b)}
	2.45(43)	2.74 ^{b)}	2.53(10)	2.67 ^{b)}
$(D_{JK})_{v} \times 10^{\circ}$	$=(D_{JK})_{0}$	2.2212 ^{b)}	$= (D_{JK})_0$	1.4343 ^{b)}

a) Errors (30) for the last significant figures in parentheses. b) Microwave value.

References

¹⁾ H. W. Kroto, J. F. Nixon, and N. P. C. Simmons, J. Mol. Spectrosc., 77, 270 (1979); N. P. C. Westwood, H. W. Kroto, J. F. Nixon, and N. P. C. Simmons, J. Chem. Soc., Dalton Trans., 1979, 1405.

²⁾ K. Ohno, H. Matsuura, and H. Murata, J. Phys. Chem., in press.
3) H. C. Allen, Jr. and P. C. Cross, "Molecular Vib-Rotors," John Wiley and Sons, Inc. New York (1963).